Seeing the Brain Hear Reveals Surprises About How Sound Is Processed

New research shows our brains are a lot more chaotic than previously thought, and that this might be a good thing. Neurobiologists at the University of Maryland have discovered information about how the brain processes sound that challenges previous understandings of the auditory cortex that suggested an organization based on precise neuronal maps.

Kanold and colleagues were able to look at the activity of all the neurons in a large region of the auditory cortex simultaneously. To get the highest resolution picture to date of how auditory cortex neurons are organized, the researchers used a technique to fill neurons in living mice with a dye that glows brightly when calcium levels rise, a key signal that neurons are firing. They then selectively illuminated specific regions of the cortex with a laser and measured the neuronal activity of hundreds of neurons in response to stimulation by simple tones of different frequencies.

“We discovered that the organization of the cortex does not look as pretty as it does in the textbooks, which surprised us,” explains Kanold. “Things are a lot messier than expected.” And we don’t see evidence of the maps previously proposed using less precise techniques.” But the disorder they found could indicate that the brain is far more adaptable than previously thought. “These results may rewrite our classical views of how cortical circuits are organized and what functions they serve,” suggests Dr. Shihab Shamma, whose previous research has involved mapping responses in the auditory cortex using traditional microelectrodes.

This suggests that there is very little redundancy in the function of cells in the auditory cortex, which differs notably from the visual cortex, in which neighboring neurons perform the same function as one another. This could be because our acoustic environment, such as the speech we hear, changes much faster than our visual environment, so we have to constantly adapt to new situations.

Read more at Science Daily

This entry was posted in Neuroscience, Sound and tagged , , . Bookmark the permalink.

Comments are closed.